Skip to Content

Translate Page

Use of arrow keys when focused on the Google language option field will translate site content on the fly. Use your enter key to review all options and choose your selection before applying.
Belmont Community School District
  • Home
  • My Home Page
  • Staff Directory

Family Links

  • Staff Directory
  • Family Access Skyward
  • EFunds

Robert Crego

Robert Crego

Robert Crego

    • < Back to District Home Page
    • My Home Page

Robert Crego

    • < Back to District Home Page
    • My Home Page

High School Math Teacher

Email

p>Mathematics Instructor

Hometown: Cedarburg WI
College: UW-Madison(1986)

 

Places I've lived/taught: Milwaukee WI, Kirtland NM, Delafield WI, Gillett WI and Belmont WI

=====================================================================

Classes Taught

Algebra

al·ge·bra

noun

  1. the part of mathematics in which letters and other general symbols are used to represent numbers and quantities in formulae and equations

 

           (ex) 

                    In this case let’s notice that we can factor out a common factor (distributive) of                        3x2 from all the terms so let’s do that first.

                                             

                    What is left is a quadratic that we can use the technique of complex trinomial                             factoring. Doing this gives us,

                                           

 

Geometry

ge·om·e·try

noun

  1. the branch of mathematics concerned with the properties and relations of points, lines, surfaces, solids, and higher dimensional analogs.

              (ex) In the figure below lines A'A" and C'C" are parallel. AB is the bisector of angle                                CAA" and BC is the bisector of angle ACC". Show that the size of angle ABC is                              equal to 90 degrees. 

                               

                     solution

                     Angles A'AC and angle ACC" are alternate interior angles and their sizes are equal.

                     which gives     angle A'AC = angle ACC" 

 

                     Angles A'AC and angle ACC" are alternate interior angles and their sizes are equal. 

                      which gives      angle A'AC = angle ACC" 

 

                      Angles A'AC and angle A"AC are supplementary so that 

                      which gives       angle A"AC = 180 - angle A'AC = 180 - angle ACC" 

 

                       Rearrange the above to obtain 

                        which gives       angle A"AC + angle ACC" = 180 0

 

                        Because AB and CB are bisectors(they divide the angle into two equal angles),                               angle ABC in triangle ABC is given by 

                         which gives       angle ABC = 180 - (angle A"AC + angle ACC") / 2 

                                                    = 180 - 180 / 2 = 90 0

 

Algebra 2

al·ge·bra

noun

  1. A branch of mathematics in which symbols, usually letters of the alphabet, represent numbers or members of a specified set and are used to represent quantities and to express general relationships that hold for all members of the set.

         (ex) Simplify the equation    .

                             

 

                       We are going to complete the square here.  

 

                       The thing that we’ve got to remember here is that we must have a coefficient                           of  1 for the x2 term in order to complete the square.  So, to get that we will                               first factor the coefficient of the x2 term out of the whole right side as follows.

                                                      

 

                           Note that this will often put fractions into the problem that is just something                             that we’ll need to be able to deal with.  Also note that if we’re lucky enough                              to have a coefficient of 1 on the x2 term we won’t have to do this step.

 

                           Now, this is where the process really starts differing from what we’ve seen                               to this point.  We still take one-half the coefficient of x and square it.                                         However, instead of adding this to both sides we do the following with it.

                                                         

                                                 

 

                            We add and subtract this quantity inside the parenthesis as shown.  Note                                    that all we are really doing here is adding in zero since 9-9=0!  The order                                  listed here is important.  We MUST add first and then subtract.

 

                           The next step is to factor the first three terms and combine the last two as                                 follows.

                                                     

 

                             As a final step we multiply the 2 back through.

                                                       

Pre-Calculus

pre·cal·cu·lus

noun

  1. a course in mathematics that prepares a student for calculus.

         (ex)  Prove the identity 

                     

                    Working the left side of the problem:

  •                    

                     

                         

                            

          Calculus

          cal·cu·lus

          noun

          1. 1.

            the branch of mathematics that deals with the finding and properties of derivatives and integrals of functions, by methods originally based on the summation of infinitesimal differences. The two main types are differential calculus and integral calculus.

                      (ex)  Differentiate  .

                                     

           

                                          At this point, we will continue to simplify the expression, leaving the final                                        answer with no negative exponents.

           

           

           

           

           

           

           

           

           

           

           

           .

          Belmont Community School District Home

          Belmont Community School District

          Contact Information

          • Belmont Community School District

            646 E Liberty St.
            Belmont, WI 53510
          • Phone

            608-762-5131
          • Fax

            608-762-5129

          Social Media

          • Belmont Community School District Social Facebook
          • Belmont Community School District Social Youtube
          Belmont Community School District Mark

          © 2026 Belmont Community School District

          • Non-Discrimination Statement
          CMS4Schools